資料下載
Data downloadIn this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study. The results of tension test results indicated the RA-BSP-PVA@PLA nanofiber exhibited excellent flexibility and better accommodates wounds. Moreover, the biocompatibility of RA-BSP-PVA@PLA was examined through MTT assay. Lastly, RA-BSP-PVA@PLA nanofibers can induce wound tissue growth, as verified by the rat dorsal skin wound models and tissue sections. Furthermore, RA-BSP-PVA@PLA can facilitate the proliferation and transformation of early wound macrophages, and down-regulate MPO+ expression of on the wound, thus facilitating wound healing, as confirmed by the result of immunohistochemical. Thus, RA-BSPPVA@PLA nanofibers show great potential as wound dressings in wound healing.